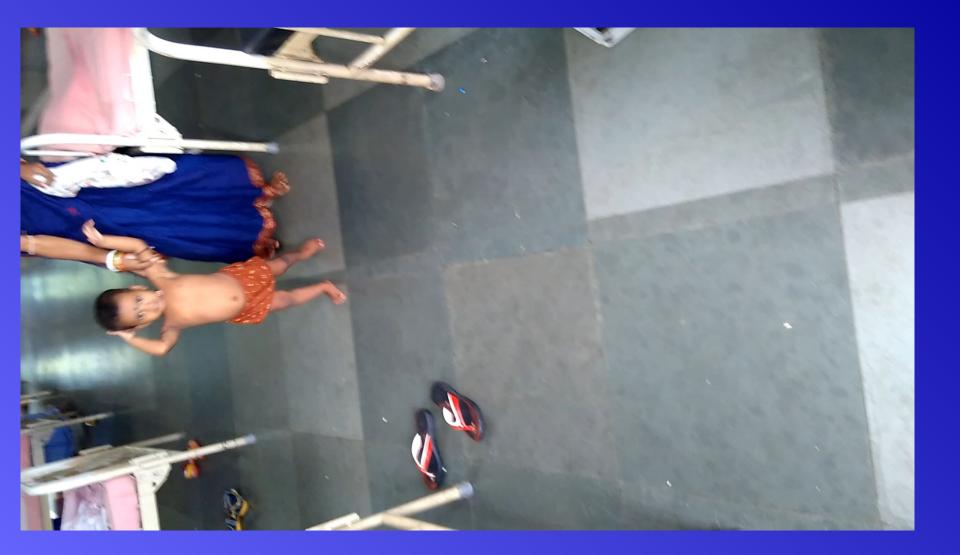
THE GAIT CYCLE AND GAIT EXAMINATION

DR SAKTI PRASAD DAS, MS(ORTHO.), DNB(PMR) DIRECTOR, SVNIRTAR, CUTTCK, ODISHA

The systematic study of of human motion

Why gait analysis?

 Everyone has their own walking /running style


- Everyone has their own walking /running style
- Assess and treat individuals with conditions affecting their ability to walk.

- Everyone has their own walking /running style
- Assess and treat individuals with conditions affecting their ability to walk.
- Used in <u>sports</u>
 <u>biomechanics</u> to help athletes run more efficiently

- Everyone has their own walking /running style
- Assess and treat individuals with conditions affecting their ability to walk.
- Used in <u>sports</u>
 <u>biomechanics</u> to help athletes run more efficiently
- Identify posture-related or movement-related problems in people with injuries

Waddling gait

Gait cycle

- A <u>gait cycle</u> consists of "the activities that occur from the point of initial contact of one lower extremity to the point at which the same extremity contacts the ground again"
- During one gait cycle, each extremity passes through two phases, a single <u>stance</u> phase and a single <u>swing</u> phase.

THE GAIT CYCLE

• Bear weight

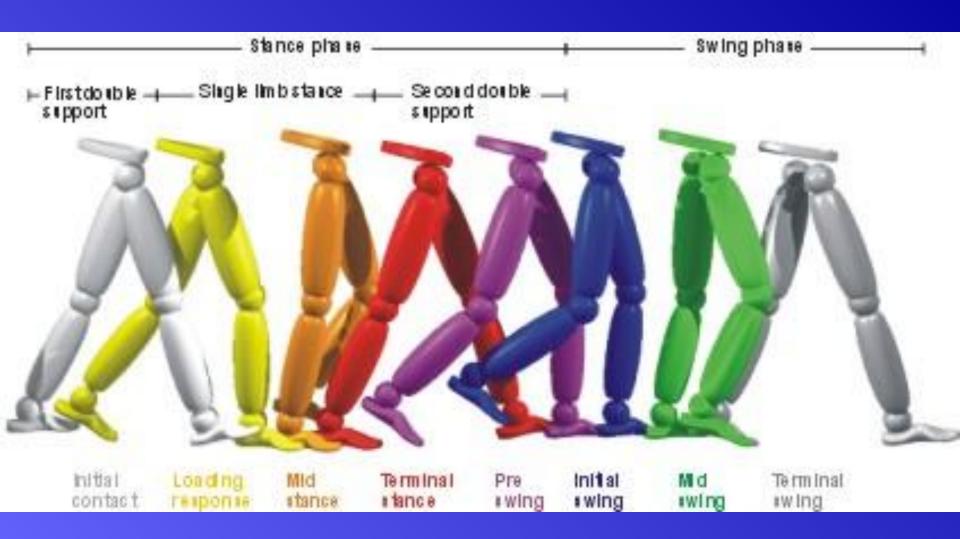
• Provide a means for locomotion

• Maintain equilibrium

THE GAIT CYCLE

STANCE PHASE 65%

- Contact Period heel strike to forefoot loading
- Midstance Period forefoot loading to heel raise
- Propulsive Period heel raise to toe off
- SWING PHASE 35%
 - Acceleration
 - Deceleration


LOCOMOTION

Position of the Lower Extremity

Weight bearing / Fixed (Closed chain) i.e. foot is on the ground - body moves over the leg

Non weight bearing / Free (Open chain) i.e. foot is off the ground - leg moves under the body

A Single Gait Cycle or Stride

Time and distances are two basic parameters of motion.


Temporal (Time) variables
 Distance (Spatial) variables

Single limb support time Double support time Cadence Speed

Stride length Step length Degree of toe out

OMPARISON OF GAIT TERMINOLOGY

Traditional –

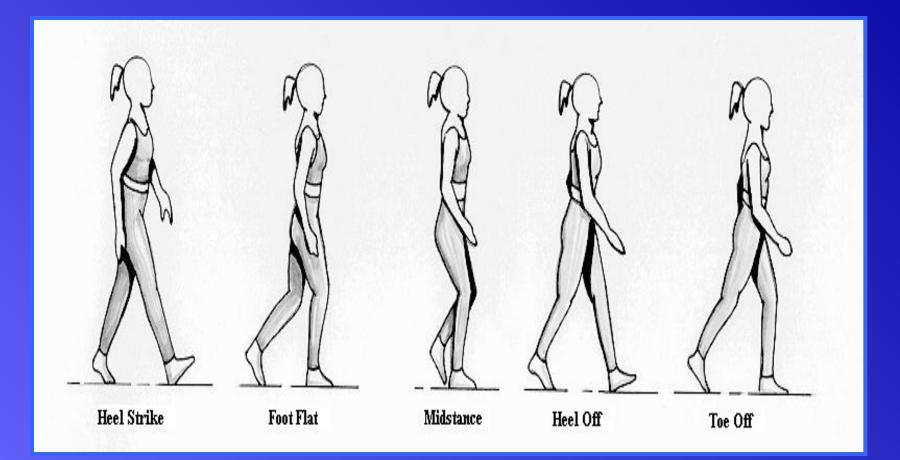
12

- Heel strike
- 2) Foot flat
- 3) Mid-stance
- 4) Heel off
- 5) Toe off
- 6) Acceleration
- 7) Mid-swing
- 8) Deceleration

RLA –

- Initial contact
- Loading response
- 3) Mid-stance
- 4) Terminal stance
- 5) Pre-swing
- 6) Initial swing
- 7) Mid-swing
- s) Terminal swing

VARIABLES


Temporal variable –

- Stance time
- Single-limb & doublesupport time,
- Swing time,
- Stride and step time,
- Cadence and
- Speed

Distance variable –

- Stride length,
- Step length and wid
- Degree of toe-out

The Stance Phase

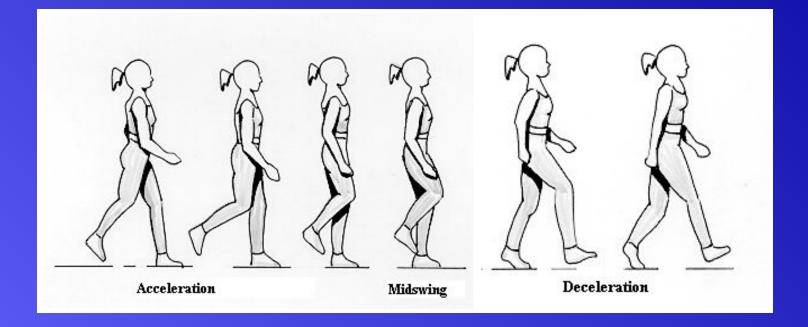
CONTACT PERIOD

- Heel strike to forefoot loading
- Foot pronates at subtalar joint
- Only time (stance phase) normal pronation occurs
- This absorbs shock & adapts foot to uneven surfaces
- Ground reaction forces peak
- Leg is internally rotating
- Ends with metatarsal heads contacting ground

MIDSTANCE PERIOD

- Forefoot loading to heel raise
- Foot stops pronating & starts supinating due to Tibialis posterior & Soleus contract
- And external rotation of the leg
- Other leg in swing phase all weight on one foot
- Vertical ground reaction forces decrease – body is directly over foot
- Ends as heel leaves ground

PROPULSIVE PERIOD


- Heel raise to toe off
- Subtalar joint supination continues until just after toe off
- Leg continues to externally rotate
- Vertical ground reaction forces peak forefoot only bearing weight on this side
- Forces move from lateral to medial passing through the hallux
- First MPJ must function correctly for maximum efficiency
- Toes are loaded to stabilise MPJ's

The Swing Phase

SWING PHASE

- Foot accelerates to "catch up" with body
- Leg internally rotates (from external position)
- Foot pronates to aid ground clearance
- Foot decelerates and slightly supinates in preparation for heel strike

GAIT EXAMINATION

- Take a history
- Couch examination
- Static examination
- Allow patient time to relax
- Reasonable length walkway gait pattern

"NORMAL" STANDING POSITION

- Feet slightly abducted & shoulder width apart
- Knees pointing forwards & extended
- Heels are vertical
- Ankles are approximately 90⁰ leg
- All MPJ's & toes are in contact with the ground

COUCH EXAMINATION

- Observe deformities & lesions
- Check ROM's
- Check muscle tightness/strength
- Neurological & vascular assessment

STATIC EXAMINATION

 Feet non-weight bearing (hanging) with weight bearing

- Standing from front

 Shoulders, hips, knees, feet
- From behind
 Shoulders, hips, calcaneus

OBSERVE GENERAL POINTS

- Is the gait fast or slow?
- Is it smooth?
- Does the patient appear relaxed & comfortable or pained?
- Is it noisy?

FEET 1

- Heel strike towards lateral side?
- Is forefoot loading lateral to medial?
- Is normal pronation occurring?
- Any medial bulging?
- Arch normal, high, low or non-existent?
- Are the feet abducted, adducted or straight?

FEET 2

- Is the 1st MPJ functioning properly?
- Are the toes bearing weight?
- When is the heel lifting?
- Is toe off through the hallux?
- Does the swing phase appear normal?
- Are the feet too close or is the base of gait wide?

- Are the knees pointing forwards?
- Is there genu valgum or varum?
- Is there tibial varum present?
- Do they appear internally or externally rotated?
- Knees from the side are they fully extending?

HIPS & BODY

 Is there any excessive movements at the hips – rotations or listing?

From the side – are there any excessive curves?

HEAD & SHOULDERS

Are the shoulders level?
Do the arms swing equally?
Does the head & neck appear normal?

PREVIOUS DESCRIPTION

• WADDLING SCISSORING • LIMPING • JUMP TRENDELENBERG • FESTINATING • EQUINUS

Gait Analysis

- Observational gait analysis
 Video gait analysis-2D
- Gait Laboratory-3D- IGA

OBSERVATIONAL GAIT ANALYSIS

- SIMPLE
- COST EFFECTIVE
- SUBJECTIVE
- LACKS ACCURACY
- TRAINING AND EXPERIENCE

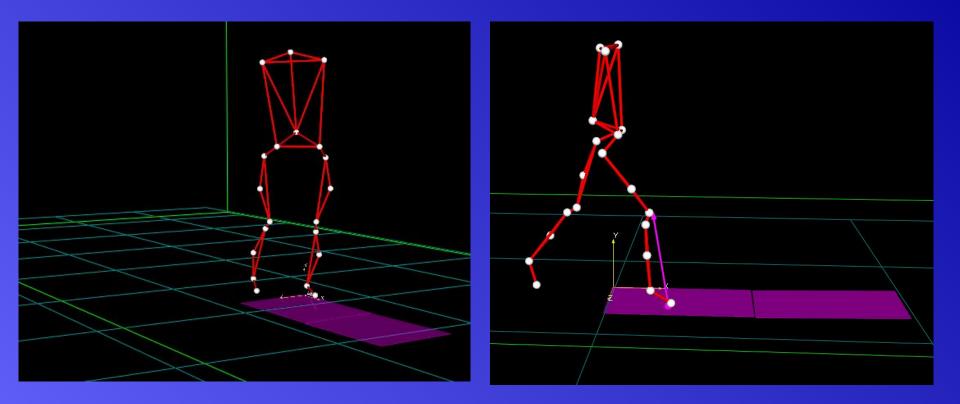
 TOOLS LIKE OGS, OGA,VGS, PRS-NONE OF THESE COMPARED TO IGA(GAIT AND POSTURE 2014)

2- D GAIT ANALYSIS

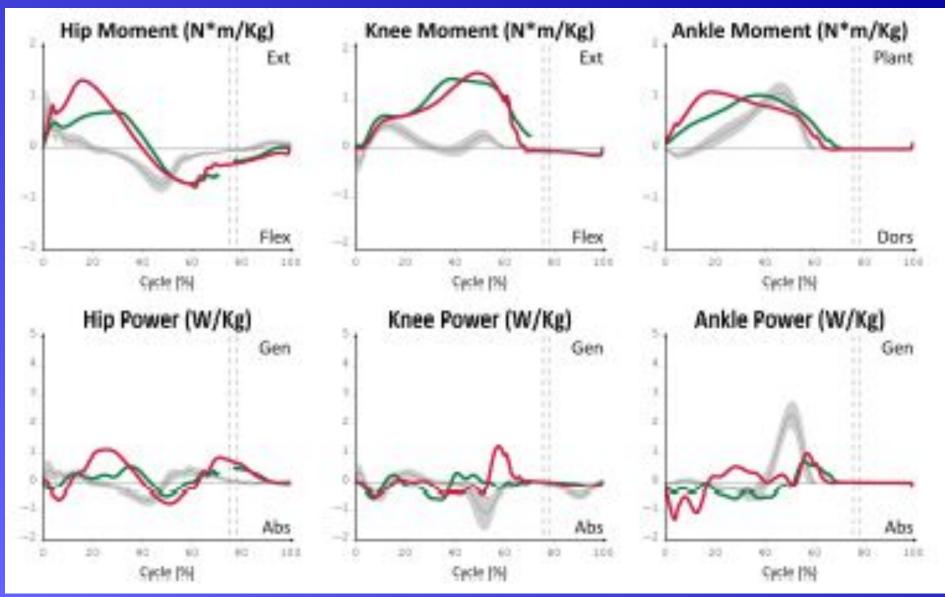
- A 2D Gait Analysis is carried out by taking a video recording of a person walking along a walkway (usually a number of times).
- Person's movements at hip, knee and ankle level, and their overall posture are assessed
- The video recording of the person walking is played back in slow-motion.
- 2D Gait Analysis software may also be used to help analyse their gait and identify any problems.

What is 3-D Gait analysis?

- Objective data
 - Walking velocity
 - Step length
 - Cadence
- 2-D videos in coronal and sagittal planes
- Joint movement in 3-D
- Measure forces going across each joint
- Dynamic EMG
- Ground reaction force vector



How do we do it?



FINAL RESULT

3D KINETICS

PATHOLOGICAL GAITS

- Abnormality in gait may be caused by
 - Pain
 - Joint muscle range-of-motion (ROM) limitation
 - Muscular weakness/paralysis
 - Neurological involvement (UMNL/ LMNL)
 - Leg length discrepancy

TYPES OF PATHOLOGICAL GAIT

Due to pain –

12

- Antalgic or limping gait (Psoatic Gait)
- Due to neurological disturbance
 - Muscular paralysis both
 - Spastic (Circumductory Gait, Scissoring Gait, Dragging or Paralytic Gait, Robotic Gait[Quadriplegic]) and
 - Flaccid (Lurching Gait, Waddaling Gait, Gluteus Maximus Gait, Quadriceps Gait, Foot Drop or Stapping Gait,)
 - Cerebellar dysfunction (Ataxic Gait)
 - Loss of kinesthetic sensation (Stamping Gait)
 - Basal ganglia dysfunction (FestinautGait)

WHAT CAN WE DO?

- Muscle stretching/strengthening
- Mobilizations
- Foot orthoses
- Footwear
- Cerebral palsy- Therapy protocol, Orthoses, Botox, Casting, Surgery

CONCLUSION

- Thorough history
- Careful examination
- Identify the problem by gait analysis
- Discuss with patient and family
- Decide on course of action
- Prescribe appropriate treatment

Indian Academy of Cerebral Palsy

Disability To Ability

THANKS

